Avsnitt

  • Der Golfstrom im Atlantik ist so etwas wie die Zentralheizung Europas. Er ist Teil eines riesigen Zirkulationssystems im Atlantischen Ozean, das warmes Wasser in Richtung Norden transportiert und damit in Europa für ein vergleichsweise mildes Klima sorgt. Doch schon seit längerem mehren sich die Anzeichen, dass sich der Golfstrom im Zuge der Klimaerwärmung deutlich verlangsamt. Ein Kollaps dieser Wärmepumpe hätte dramatische Auswirkungen auf das globale Klima und besonders große Folgen für Europa, wie ein Blick in die Klimageschichte zeigt: Vor rund 12.000 Jahren löste ein Zusammenbruch des atlantischen Strömungssystems eine Kälteperiode aus, die 1.000 Jahre andauerte.

    Forschende warnen, dass wir auf einen neuerlichen Kipppunkt zusteuern könnten, doch diesmal unter völlig anderen Vorzeichen. Denn die Ursache für das heute im historischen Vergleich rasante Schwächerwerden des Golfstroms ist die menschengemachte Erderwärmung. Doch weshalb könnte ausgerechnet die Erderhitzung Europa in die Kälte stürzen? Wie wahrscheinlich ist ein Kollaps des Golfstroms, und was können wir tun, um ihn zu verhindern? Darüber sprechen Tanja Traxler und David Rennert mit dem Klimaforscher Marc Olefs von Geosphere Austria in der neuen Folge von "Rätsel der Wissenschaft".

  • Sprichwörtlich ist sie Geld, kommt mit Rat und heilt alle Wunden. Doch was die Zeit eigentlich wirklich ist, lässt sich nicht so einfach beantworten. Seit langem ist sie Thema wissenschaftlicher und philosophischer Kontroversen. Doch je mehr Forscherinnen und Forscher über das Wesen der Zeit herausfinden, desto komplizierter wird unser Bild davon.

    Dank Albert Einsteins Relativitätstheorie wissen wir, dass die Zeit kein absolutes Uhrwerk ist, das einen unveränderlichen Takt des Universums vorgibt. Sie ist eben relativ – und mit dem Raum in eine vierdimensionale Raumzeit verwoben. Das hat merkwürdige Nebeneffekte: Für jemanden, der sich bewegt, vergeht die Zeit langsamer als für jemanden, der stillsteht. Auf einem Berg vergeht die Zeit wiederum schneller als im Tal, denn nicht nur Bewegung, auch die Gravitation beeinflusst die Zeit. Das lässt sich auch experimentell nachweisen.

    Es wird aber noch viel merkwürdiger. Denn die Quantentheorie, die zweite große Theorie der modernen Physik, bringt ein völlig anderes Zeitverständnis mit. Manche Quantenphysikerinnen und Quantenphysiker stellen sogar die Frage, ob es Zeit auf fundamentaler Ebene denn überhaupt gibt. Wie ist das zu verstehen? Wie bringt die Forschung dazu die Wissenschaft voran, und was hat die rätselhafte Zeit mit Katzen gemeinsam? Darüber sprechen David Rennert und Tanja Traxler in der neuen Folge von "Rätsel der Wissenschaft" mit dem italienischen Physiker und Autor Carlo Rovelli.

  • Saknas det avsnitt?

    Klicka här för att uppdatera flödet manuellt.

  • Wenn es um die Ausbreitung nichtheimischer Tier- und Pflanzenarten geht, greifen Ökologinnen und Ökologen zu drastischen Worten: Von biologischen Invasoren ist da die Rede, von gebietsfremden Arten, die zur ökologischen Bedrohung werden können. Übertrieben ist das nicht, tatsächlich handelt es sich um ein weltweit rasant wachsendes Problem: Immer mehr Spezies werden vor allem durch den globalen Warenverkehr und unsere Reisen in neue Gebiete eingeschleppt. Dort können sie sich oft schnell ausbreiten und gegen die einheimische Konkurrenz durchsetzen.

    Im vergangenen Jahr benannte der UN-Weltbiodiversitätsrat (IPBES) in einem umfangreichen Bericht die Dimension des Problems: Invasive Arten seien ein Hauptfaktor für das globale Artensterben und würden zudem massiven wirtschaftlichen und gesundheitlichen Schaden anrichten. Demnach gelangten bislang mehr als 37.000 Spezies durch menschliche Aktivitäten in neue Gebiete, mehr als 3.500 davon gelten als ernsthafte ökologische Bedrohung.

    Welche invasiven Arten sind besonders problematisch, und wie könnten wir ihre Ausbreitung in den Griff bekommen? Darüber sprechen David Rennert und Tanja Traxler in der neuen Folge von "Rätsel der Wissenschaft" mit dem Schweizer Ökologen Sven Bacher, der am Bericht des UN-Weltbiodiversitätsrats mitgearbeitet hat.

  • Um die Gesetze des Universums zu ergründen, haben Physikerinnen und Physiker das Standardmodell der Teilchenphysik entwickelt. Es beschreibt alle uns bekannten Elementarteilchen und die Wechselwirkungen zwischen ihnen. Am Ziel sind Forschende damit aber noch lange nicht. Es gibt zahlreiche Hinweise auf eine Physik jenseits dieses Standardmodells, auf Lücken, auf unbekannte Teilchen und mysteriöse Kräfte. Zu den größten ungelösten Rätseln zählt das Materie-Antimaterie-Ungleichgewicht im Universum.

    Von jedem bekannten Teilchen gibt es auch ein Antiteilchen. Wenn diese beiden ungleichen Zwillinge aufeinandertreffen, vernichten sie sich gegenseitig. Beim Urknall ist dem Standardmodell der Teilchenphysik zufolge gleich viel Materie wie Antimaterie entstanden – und diese hätte sich gegenseitig auslöschen müssen. Das ist zum Glück nicht passiert, wir selbst und alle Objekte, die wir kennen, bestehen aus Materie. Aber wie ist das möglich, und wo ist die ganze Antimaterie hinverschwunden?

    Diesen Fragen gehen David Rennert und Tanja Traxler mit dem STANDARD-Wissenschaftsredakteur Reinhard Kleindl und dem Antimaterieforscher Carsten Welsch von der Universität Liverpool in der neuen Folge von "Rätsel der Wissenschaft" nach. Sie besprechen auch, wie man Antimaterie im Labor erzeugt, in welchen medizinischen Anwendungen sie steckt und ob sie uns auch gefährlich werden könnte.

  • Können Tiere träumen? Wer mit Haustieren lebt, wird diese Frage wahrscheinlich mit Ja beantworten. Hunde, die im Schlaf wild japsen und die Pfoten bewegen oder Katzen, die schlafend auf der Couch scheinbar Mäuse fangen, erwecken jedenfalls den Anschein, intensiv zu träumen. Wissenschaftliche Nachweise für Träume bei Tieren zu erbringen, ist jedoch alles andere als einfach. Lange Zeit galt die Forschung dazu sogar als unwissenschaftlich oder irrelevant.

    In den vergangenen Jahren hat die tierische Traumforschung aber große Fortschritte gemacht. So zeigt sich etwa, dass die Schlafphasen zahlreicher Spezies denen von Menschen erstaunlich ähnlich sind. Am meisten und intensivsten träumen Menschen im sogenannten REM-Schlaf, in dem auch die Gehirnaktivität zunimmt. Inzwischen wurden REM-ähnliche Schlafphasen nicht nur bei vielen anderen Säugetieren entdeckt, sondern auch bei Vögeln, Fischen, Kraken und sogar bei Spinnen.

    Die Schlafphase allein beweist noch nicht, dass ein Tier auch tatsächlich träumt. Die Hirnforschung liefert aber immer mehr Hinweise darauf, was sich im tierischen Schlaf abspielt: Bei manchen Vögeln etwa gleicht die neuronale Aktivität im REM-Schlaf jener beim Fliegen oder Singen, bei Ratten sind wiederum dieselben Muster wie beim Lösen von Aufgaben im Wachzustand erkennbar. Träumen Vögel also vom Fliegen und Ratten von Labyrinthen? Durchleben Tiere auch Albträume? Und was hat es mit einem revolutionären Katzenexperiment aus den 1960er-Jahren auf sich, dass die Samtpfoten zu Schlafwandlern machte? Diesen Fragen gehen David Rennert und Tanja Traxler in der neuen Folge von "Rätsel der Wissenschaft" nach.

  • Woraus besteht das Universum? Alles, was wir über diese große Frage wissen, bildet das sogenannte Standardmodell der Teilchenphysik. Es beschreibt die uns bekannten Elementarteilchen und die Wechselwirkungen zwischen ihnen. Unser Wissen ist aber begrenzt: Es gibt zahlreiche Hinweise auf eine Physik jenseits dieses Standardmodells, auf unbekannte Teilchen und Kräfte. 

    Die weltweit wichtigste Forschungseinrichtung, die unser Wissen über die Bausteine der Materie vorantreibt, ist die Europäische Organisation für Kernforschung bei Genf, besser bekannt als Cern. Dort steht das größte wissenschaftliche Experiment der Erde: Im ringförmigen Teilchenbeschleuniger Large Hadron Collider (LHC), der einen Umfang von 26,7 Kilometern hat, lassen Forschende Teilchen mit Rekordenergie miteinander kollidieren. Der wichtigste Erfolg des LHC war der Nachweis des Higgs-Teilchens, das lange als das letzte fehlende Puzzlestück im Standardmodell der Teilchenphysik galt. 

    Geht es nach den Forschenden am Cern, soll aber schon bald ein noch viel größeres Experiment den LHC in den Schatten stellen. Fast 100 Kilometer soll der Umfang des Teilchenbeschleunigers Future Circular Collider betragen. Welche Rätsel könnte man mit diesem gigantischen Instrument lösen? Was genau passiert in einem Teilchenbeschleuniger überhaupt? Und bergen Teilchenkollisionen mit derart hohen Energien auch Risiken? Darüber sprechen David Rennert und Tanja Traxler in der neuen Folge von "Rätsel der Wissenschaft" mit dem österreichischen Physiker Michael Benedikt, der am Cern die Machbarkeitsstudie zu dem vorgeschlagenen neuen Teilchenbeschleuniger leitet.

  • Noch erstreckt sich der Permafrost über gewaltige Areale der Erde. Etwa ein Fünftel der Landmassen auf der Nordhalbkugel weist solche langfristig gefrorenen Böden auf, die größten zusammenhängenden Permafrostgebiete liegen in Sibirien, Kanada und Alaska. Doch gerade die arktischen Breiten sind besonders stark vom Klimawandel betroffen, sie erwärmen sich viermal schneller als der Rest der Welt. Auch der Permafrost taut zunehmend auf – und mit ihm gefährliches Tiefkühlgut.

    In den Böden schlummern gigantische Mengen an Kohlenstoff. Wird es wärmer, beginnen Mikroorganismen mit dem Abbau dieses Materials und produzieren dabei Treibhausgase. Je mehr die Temperaturen steigen, desto aktiver wird diese unterirdische Treibhausgasquelle – und kurbelt den Klimawandel noch weiter an. Der Permafrost droht aber nicht nur zu einem Kipppunkt im Klimawandel zu werden. Auch Krankheitserreger und Umweltgifte könnten aus den tauenden Böden entweichen: Uralte Viren, tödliche Bakterien und radioaktive Abfälle lagern dort ebenfalls. 

    Wie groß ist die Klimagefahr des Permafrosts wirklich? Könnten jahrtausendealte Viren aus den Böden eine neue Pandemie auslösen? Welche Risiken gibt es für die Umwelt und die lokale Bevölkerung? Darüber sprechen David Rennert und Tanja Traxler mit dem Ökosystemforscher Andreas Richter und dem Virologen Florian Krammer in der neuen Folge von "Rätsel der Wissenschaft".

  • Noch vor wenigen Jahrzehnten war kein einziger Planet außerhalb des Sonnensystems bekannt, inzwischen haben Forschende schon tausende Exoplaneten entdeckt, die um ferne Sterne kreisen. Praktisch täglich kommen neue Funde dazu. Astronominnen und Astronomen gehen heute davon aus, dass es im Universum mehr Planeten als Sterne gibt. Die lange Liste der bisherigen Entdeckungen zeigt eine überraschend große Vielfalt und beinhaltet auch Planetentypen, die wir aus dem Sonnensystem gar nicht kennen: heiße Gasplaneten etwa, die ihren Stern extrem eng umkreisen, Welten, die durch die Gravitation ihres Sterns völlig verformt wurden, und sogar Planeten, die aus ihrer Bahn geschleudert wurden und ganz allein durch das Universum rasen.

    Eine zweite Erde wurde bisher nicht gefunden. Zwar kennt man bereits etliche interessante Planeten, die sich in der sogenannten habitablen Zone ihres Sterns befinden. So nennt man jenen Bereich, in dem flüssiges Wasser auf der Oberfläche möglich wäre – eine Grundvoraussetzung für Leben, wie wir es kennen. Allerdings gibt es noch viele andere Bedingungen, die für Lebensfreundlichkeit nach irdischen Maßstäben ausschlaggebend sind.

    Wie stehen die Chancen, dass wir einen Erdzwilling finden? Ließe sich nachweisen, ob dort Leben existiert? Und welche neuen Instrumente könnten die Erforschung ferner Planeten schon in naher Zukunft revolutionieren? Darüber sprechen David Rennert und Tanja Traxler mit den Exoplanetenforschern Monika Lendl und Luca Fossati in der aktuellen Folge von "Rätsel der Wissenschaft".

  • Unsere Vorstellung von den Neandertalern hat sich in den vergangenen Jahrzehnten stark gewandelt. Die vermeintlich tumben Höhlenmenschen, so zeigen immer mehr Funde, standen dem modernen Menschen in vielerlei Hinsicht in nichts nach. Homo neanderthalensis beherrschte das Feuer, stellte Werkzeuge und Schmuck her, bestattete seine Toten und betätigte sich auch künstlerisch. Genetische Analysen zeigen inzwischen auch: Als Homo sapiens aus Afrika nach Eurasien kam und dort vor mehr als 40.000 Jahren auf Neandertaler traf, wurde es mitunter intim. Sie konkurrierten nicht nur miteinander, sondern zeugten auch gemeinsamen Nachwuchs.

    Das Ergebnis dieser Techtelmechtel tragen die meisten heute lebenden Menschen nach wie vor in sich. Das Erbgut von Europäerinnen und Europäern etwa besteht im Schnitt aus ein bis zwei Prozent Neandertaler-DNA. Wie beeinflussen uns diese Urmenschen-Gene heute? Wie lässt sich das Erbgut ausgestorbener Arten überhaupt untersuchen? Und was hat die genetische Forschung über die Neandertaler bisher enthüllt? Darüber sprechen Tanja Traxler und David Rennert mit der STANDARD-Wissenschaftsredakteurin Julia Sica in der aktuellen Folge von "Rätsel der Wissenschaft".

  • Vögel galten lange als rein instinktgesteuerte Tiere, doch dieses Bild hat sich in den vergangenen Jahrzehnten gewaltig verändert. Insbesondere Rabenvögel sind in den Fokus der Forschung gerückt: Die Tiere sind nicht nur äußerst geschickt und kreativ beim Lösen von Problemen und verwenden mitunter sogar Werkzeuge. Sie verfügen auch über eine enorme soziale Intelligenz, die in vieler Hinsicht an uns Menschen erinnert: Sie sind nachtragend, können sich in andere hineinversetzen, Handlungen im Voraus planen und, wenn es um eigene Vorteile geht, ihre Artgenossen nach Strich und Faden betrügen. 

    Die kognitiven Leistungen von Raben und Krähen sind auch deshalb faszinierend, weil ihre Gehirne völlig anders aufgebaut sind als die von Säugetieren. Was diese Vögel so besonders macht, welche Tricks sie auf Lager haben und weshalb man sich eher nicht mit ihnen anlegen sollte, besprechen David Rennert und Tanja Traxler mit dem Rabenforscher Thomas Bugnyar in der neuen Folge von "Rätsel der Wissenschaft".

  • Der Rekord liegt bei 122 Jahren: So alt wurde die 1997 verstorbene Französin Jeanne Calment, sie gilt als ältester dokumentierter Mensch, der je gelebt hat. Das dürfte sich aber ändern. Denn einerseits steigt die Zahl der über 100-Jährigen stetig an: Erreichten in den 1960er-Jahren weltweit rund 20.000 Menschen ein Alter jenseits der 100, waren es im Jahr 2020 schon immerhin mehr als 570.000, der Großteil davon Frauen. Zum anderen deuten einige Studien darauf hin, dass eine mögliche Höchstgrenze der menschlichen Lebensdauer noch nicht erreicht ist.

    In den vergangenen 150 Jahren hat sich die Lebenserwartung in etwa verdoppelt. Das ist vor allem besserer Ernährungssicherheit und medizinischen Fortschritten zu verdanken. Wie geht es weiter? Jüngste Ergebnisse der Langlebigkeitsforschung verbessern unser Wissen immer weiter, welche Faktoren ein langes und gesundes Leben begünstigen. Welche Rolle die Gene spielen, welche Wirkstoffe im Fokus der Altersforschung stehen und was wir selbst tun können, um unsere Chancen auf ein hohes Alter zu erhöhen, besprechen David Rennert und Tanja Traxler in der neuen Folge von "Rätsel der Wissenschaft".

  • Die Corona-Pandemie erwies sich im Rückblick als Brennglas für ein Problem, das schon lange schwelte: Das Vertrauen vieler Menschen in Wissenschaft und Medizin ist gering, das Interesse an "alternativen Zugängen" groß. Wissenschaftlichen Fakten steht eine Vielzahl an Behauptungen, Verschwörungsmythen oder Heilsversprechen gegenüber, egal ob es um Impfungen gegen gefährliche Infektionskrankheiten geht oder um die Existenz des Klimawandels. Nicht selten geht es dabei auch um viel Geld. "Alternativmedizinische" Angebote wie die Homöopathie haben sich trotz ihrer Wirkungslosigkeit zu einem Milliardengeschäft entwickelt.

    Wie kommt es, dass sich Menschen von der evidenzbasierten Medizin abwenden und stattdessen auf Methoden setzen, für deren Erfolg es keine Belege gibt? Weshalb sind auch rationale Menschen manchmal abergläubisch? Lässt sich Religion mit Wissenschaft vereinbaren, und wie kann man Wissenschaft überhaupt von Pseudowissenschaft unterscheiden? Diese großen Fragen besprechen Tanja Traxler und David Rennert in der neuen Folge von "Rätsel der Wissenschaft" mit dem STANDARD-Wissenschaftsredakteur Martin Stepanek, dem Epidemiologen Gerald Gartlehner und dem Wissenschaftsphilosophen Lee McIntyre.

  • Methan ist nach Kohlendioxid das größte Klimaproblem. Das Treibhausgas verschwindet zwar viel schneller wieder aus der Atmosphäre als CO2, weshalb es auf lange Sicht eine weitaus geringere Rolle bei der Erderhitzung spielt. Kurzfristig ist es aber viel klimaschädlicher. Etwa 45 Prozent der bisherigen Erderwärmung von 1,11 Grad Celsius seit Beginn des industriellen Zeitalters gehen auf das Konto von Methan.

    Das Treibhausgas entsteht überall, wo Biomasse unter Luftabschluss verrottet. Das passiert sowohl durch natürliche Prozesse als auch durch menschliche Aktivitäten: Methan entweicht aus Sümpfen, Feuchtgebieten und tauenden Permafrostböden. Noch stärker fallen aber die Landwirtschaft, die Nutzung fossiler Brennstoffe und Mülldeponien ins Gewicht, rund 60 Prozent der Emissionen gehen Schätzungen zufolge auf den Menschen zurück. Hier gibt es großes Einsparungspotenzial.

    Doch obwohl es inzwischen deutliche Bemühungen gibt, den Methanausstoß zu senken, nimmt die Methankonzentration in der Erdatmosphäre weiter zu, seit einigen Jahren steigen die Emissionen sogar immer schneller. Was steckt hinter diesem plötzlichen Anstieg? Welche Folgen hat das für das Klima und was können wir tun, um die Klimagefahr von Methan zu entschärfen? Das besprechen David Rennert und Tanja Traxler in der neuen Folge von "Rätsel der Wissenschaft" mit dem britischen Atmosphärenforscher Euan Nisbet, der sich seit Jahrzehnten mit dem Treibhausgas beschäftigt.

  • Tiefkühlpizza, Fastfood und Süßigkeiten sind nicht gesund – das wird wohl niemanden überraschen. Sie beinhalten viel Fett und Zucker und liefern gleichzeitig nur wenig gesunde Nährstoffe. Doch sind die Inhaltsstoffe von Nahrungsmitteln allein dafür verantwortlich, wie sich unsere Ernährung auf die Gesundheit auswirkt? Darüber ist in den Ernährungswissenschaften eine Diskussion entbrannt, in deren Zentrum eine große Palette an Produkten steht: sogenannte hochverarbeitete Lebensmittel.
    Darunter fällt nicht nur das allermeiste, was gemeinhin als Junkfood gilt. Auch viele vorgeblich natürliche Bioprodukte oder fettreduzierte Lebensmittel, die als besonders gesund angepriesen werden, sind oft stark verarbeitet. Forschende sehen in der allgegenwärtigen Verfügbarkeit solcher Lebensmittel eine mögliche Ursache für die rasante Zunahme von Adipositas und anderen Krankheiten wie Diabetes, Herz-Kreislauf-Erkrankungen und verschiedenen Krebsarten.
    Manche Fachleute orten die Wurzel des Übels nicht allein bei den Inhaltsstoffen dieser Lebensmittel, sondern schreiben ihrem Herstellungsprozess selbst eine schädliche Wirkung zu. Doch reicht die Datenlage für diese gewagte These wirklich aus? Was genau bedeutet "hochverarbeitet" überhaupt, und welche Produkte stehen dabei besonders im Fokus? Darüber sprechen Tanja Traxler und David Rennert in der neuen Folge von "Rätsel der Wissenschaft".

  • Inzwischen wissen wir einiges darüber, wie alles begonnen hat: Unser Universum entstand mit dem Big Bang vor 13,8 Milliarden Jahren, seitdem dehnt sich der Kosmos immer weiter aus. Mithilfe von astronomischen Daten zu fernen Sternen und Galaxien lässt sich die Entwicklung des jungen Universums immer detailliert nachvollziehen, neue Instrumente wie das James-Webb-Weltraumteleskop ermöglichen faszinierende Blicke in die Frühzeit des Kosmos. Wohin aber geht die Reise?

    Noch ist nicht entschieden, welche ultimative Zukunft dem Universum blüht. Aus den Beobachtungsdaten und dem Standardmodell der Kosmologie lassen sich aber eine ganze Reihe von Möglichkeiten ableiten. Die denkbaren Endzeitszenarien sind ungemütlich bis haarsträubend: Dem Universum könnte zum Beispiel ein langsames Einfrieren in zunehmender Finsternis drohen, es könnten aber auch alle Strukturen des Kosmos unter dem Einfluss einer mysteriösen Energie zerreißen, von den größten Galaxien bis zu den kleinsten Molekülen.

    Es ginge aber sogar noch dramatischer, wenn etwa das Vakuum im Weltall kollabiert. Wie genau das ultimative Ende von allem aussehen könnte und was das für uns Erdenbewohner bedeutet, besprechen David Rennert und Tanja Traxler in der neuen Folge von "Rätsel der Wissenschaft".

  • Ein Fund in Südostengland sorgte 1912 für internationale Schlagzeilen: Der britische Hobbyforscher Charles Dawson entdeckte in einer Kiesgrube einen Schädel, der ein neues Bild von der Evolutionsgeschichte des Menschen zeichnete. Dawson präsentierte nicht weniger als einen angeblichen evolutionären Missing Link zwischen Menschenaffen und Menschen, den sogenannten Piltdown-Menschen. Einige Forschende meldeten schon bald Zweifel an der Entdeckung an. Bis sich der sensationelle Fund endgültig als elaborierte Fälschung herausstellte, sollte es aber noch dauern.

    Vor 70 Jahren, im November 1953, gelang dann der Nachweis: Der Schädel war ein geschicktes Flickwerk aus den Knochen von Menschen und Affen. Doch wer steckte hinter dieser Fälschung? Was war die Motivation dafür? Und weshalb dauerte es so lange, bis der Betrug aufgedeckt werden konnte?

    Darüber sprechen Tanja Traxler und David Rennert in der neuen Folge von "Rätsel der Wissenschaft" mit der STANDARD-Wissenschaftsredakteurin Julia Sica und dem Wissenschaftshistoriker Oliver Hochadel. Im Lauf der Zeit gab es viele Verdächtige im kuriosen Fall um den Piltdown-Menschen, sogar Sherlock-Holmes-Autor Arthur Conan Doyle könnte dabei eine Rolle gespielt haben. Der kuriose Krimi ist aber auch eine Geschichte von wissenschaftlichem Wunschdenken, Rassismus und nationalistischen Überlegenheitsgefühlen im frühen 20. Jahrhundert.

    **Hat Ihnen dieser Podcast gefallen?** Mit einem STANDARD-Abonnement können Sie unsere Arbeit unterstützen und mithelfen, Journalismus mit Haltung auch in Zukunft sicherzustellen. Alle Infos und Angebote gibt es hier: [abo.derstandard.at](https://abo.derstandard.at/?ref=Podcast&utm_source=derstandard&utm_medium=podcast&utm_campaign=podcast&utm_content=podcast)

  • Es ist beachtlich, was die Menschheit alles über unser Universum herausgefunden hat. Wir wissen, dass es vor 13,8 Milliarden Jahren mit dem Urknall entstanden ist und haben ein gutes Bild davon, wie sich die ersten Moleküle und die ersten Sterne gebildet haben. Wir kennen Schwarze Löcher, ferne Exoplaneten und Geburtsstätten von Sternen, haben Raumsonden zu anderen Planeten, Asteroiden und Kometen geschickt. Umso ernüchternder ist aber, dass wir noch immer nicht wissen, woraus der allergrößte Teil des Universums besteht.

    Alles, was wir da draußen sehen können, alle Planeten, Sterne, Nebel und Galaxien, machen gerade einmal lächerliche fünf Prozent von dem aus, was tatsächlich da ist. Und die übrigen 95 Prozent? Der unsichtbare Teil besteht aus zwei rätselhaften Größen, die in der Wissenschaft verlegenheitshalber "Dunkle Energie” und "Dunkle Materie" genannt werden. Sie sind für uns unsichtbar, Forschende können Dunkle Energie und Dunkle Materie nur indirekt beobachten, indem sie ihre Effekte messen.
     
    Worum handelt es sich also bei der Dunklen Materie und Dunklen Energie? Wie wirken sie auf die uns bekannten kosmischen Objekte? Und wie versuchen Forschende, sich dem kosmologischen Rätsel des Dunklen Universums zu nähern? Darüber sprechen David Rennert und Tanja Traxler mit dem Wiener Physiker Josef Pradler in der neuen Folge von "Rätsel der Wissenschaft".

    **Hat Ihnen dieser Podcast gefallen?** Mit einem STANDARD-Abonnement können Sie unsere Arbeit unterstützen und mithelfen, Journalismus mit Haltung auch in Zukunft sicherzustellen. Alle Infos und Angebote gibt es hier: [abo.derstandard.at](https://abo.derstandard.at/?ref=Podcast&utm_source=derstandard&utm_medium=podcast&utm_campaign=podcast&utm_content=podcast)

  • Seit mehr als 120 Jahren werden die Nobelpreise für wissenschaftliche Leistungen vergeben, Anfang Oktober ist es wieder so weit. Frauen wurden mit dem bedeutenden Preis aber nur selten ausgezeichnet. In Physik und Chemie gibt es bis heute nicht einmal 20 Preisträgerinnen. Die österreichische Physik-Pionierin Lise Meitner (1878–1968) war nicht darunter – obwohl sie eine hervorragende Kandidatin dafür war.

    Meitner war die einflussreichste Physikerin des 20. Jahrhunderts und Mitentdeckerin der Kernspaltung. Doch Ruhm und Ehre wurden ihr zu Lebzeiten kaum zuteil. Welche enormen Hürden Meitner als Frau in der männerdominierten Wissenschaft überwinden musste und wie sie die Physik nachhaltig prägte, besprechen Tanja Traxler und David Rennert in der neuen Folge von "Rätsel der Wissenschaft". Dabei geht es auch um die Frage, warum Meitners Forschungspartner Otto Hahn allein mit dem Nobelpreis ausgezeichnet wurde, während sie selbst leer ausging – trotz 49 Nominierungen.

  • Vor mehr als viereinhalbtausend Jahren begannen Menschen im heutigen Südengland mit dem Bau eines Monuments, das die Wissenschaft bis heute in seinen Bann zieht. Stonehenge auf der Hochebene von Salisbury zählt zu den berühmtesten prähistorischen Bauwerken der Menschheitsgeschichte und ist der am besten untersuchte neolithische Steinkreis der Welt. Doch nach wie vor gibt das Bauwerk Rätsel auf. 
    In den vergangenen Jahren erlangten Archäologinnen und Archäologen viele neue Erkenntnisse über Stonehenge. So steht inzwischen fest, dass sich Stonehenge im Lauf der Zeit enorm verändert hat, der heutige Steinkreis ist nur der Überrest der letzten Version dieses Bauwerks. Und es ist keineswegs ein isoliertes Monument: Rund um den Steinkreis finden sich unzählige kleinere Bauwerke, Gräber und andere Strukturen.
    Wer waren die Erbauer von Stonehenge, zu welchem Zweck wurde der Steinkreis errichtet und wie konnte der Transport der tonnenschweren Gesteinsbrocken zu diesem Ort überhaupt gelingen? Darüber sprechen David Rennert und Tanja Traxler mit Thomas Bergmayr aus der STANDARD-Wissenschaftsredaktion und dem österreichischen Archäologen Wolfgang Neubauer, der selbst in Stonehenge geforscht hat.

  • An Land führen Giraffen und Elefanten die Rekordlisten für Größe und Gewicht an, als größter Gigant gilt aber langem ein Meeresbewohner: Der Blauwal ist mit einer Körperlänge von bis zu 33 Metern und 200 Tonnen Gewicht das größte Tier des Planeten – und das schwerste aller Zeiten. In Sachen Körpermasse übertrifft er selbst die größten Dinosaurier, die je in den Urwäldern vergangener Erdzeitalter grasten.

    Doch der Rekordstatus des Blauwals wackelt. Ein Fund aus Peru brachte vor kurzem aber einen neuen Kandidaten für den globalen Gewichtsrekord ins Spiel. Perucetus colossus, ein Urwal, der vor 39 Millionen Jahren durch seichte Küstengewässer schwamm, könnte bis zu 340 Tonnen gewogen haben. Wie bestimmt man das Gewicht eines Tieres aus Urzeiten, von dem nur einige Knochen übriggeblieben sind? Was ist das natürliche Limit für Körpergröße und Gewicht? Und wer hat heute den längsten Körper der Welt? Darüber sprechen David Rennert und Tanja Traxler mit dem Paläontologen Eli Amson vom Staatlichen Naturkundemuseum Stuttgart.