Avsnitt

  • Perhaps as many as five times over the course of Earth history, most of the continents gathered together to form a supercontinent. The supercontinents lasted on the order of a hundred million years before breaking apart and dispersing the continents. For decades, we theorized that this cycle of amalgamation and breakup was caused by near-surface tectonic processes such as subduction that swallowed the oceans between the continents and upper mantle convection that triggered the rifting that split the supercontinents apart. As Damian Nance explains in the podcast, newly acquired evidence suggests a very different picture in which the supercontinent cycle is the surface manifestation of a process that involves the entire mantle all the way to the core-mantle boundary.

    Damian Nance draws on a wide range of geological evidence to formulate theories about the large-scale dynamics of the lithosphere and mantle spanning a period going back to the Archean. A major focus of his research is the supercontinent cycle. He is Distinguished Professor Emeritus of Geological Sciences at Ohio University.

  • The Earth’s tectonic plates float on top of the ductile portion of the Earth’s mantle called the asthenosphere. The properties of the asthenosphere, in particular its viscosity, are thought to play a key role in determining how plates move, subduct, and how melt is produced and accumulates. We would like to know what the viscosity of the the asthenosphere is, and how it depends on temperature, pressure, and the proportion of melt and water it contains. Few mantle rocks ever reach the Earth’s surface, and those that do are altered by weathering. So, as he explains in the podcast, David Kohlstedt and his team have tried to replicate the rock compositions and physical conditions of the mantle in the lab. Using specially-built apparatus, he has been able to determine the viscosity of the asthenosphere to within an order of magnitude, which is an enormous improvement on what was known before.David Kohlstedt is Professor Emeritus at the School of Earth and Environmental Science at the University of Minnesota.

  • Saknas det avsnitt?

    Klicka här för att uppdatera flödet manuellt.

  • In many countries, nuclear power is a significant part of the energy mix being planned as part of the drive to achieve net-zero greenhouse-gas emissions. This means that we will be producing a lot more radioactive waste, some of it with half-lives that approach geological timescales, which are orders of magnitude greater than timescales associated with human civilizations. In the podcast, Claire Corkhill discusses the geology such storage sites require, some new materials that can confine radioactive isotopes over extremely long timescales, and the kind of hazards, including human, we need to guard against.

    Claire Corkhill is Professor of Mineralogy and Radioactive Waste Management in the School of Earth Sciences at the University of Bristol, UK.

  • We have learned a great deal about the geology of the Moon from remote sensing instruments aboard lunar orbiters, from robot landers, from the Apollo landings, and from samples returned to the Earth by Apollo and robot landings. But in 2025, when NASA plans to land humans on the Moon for the first time since 1972, a new phase of lunar exploration is expected to begin. What will this mean for our understanding of the origin, evolution, and present structure of the Moon? A lot, according to Mahesh Anand. For example, as he explains in the podcast, satellite imagery suggests that volcanism continued for much longer than was previously thought, perhaps until as recently as 100 million years ago. In-situ inspection and sample return should help us explain this surprising finding.

    Mahesh Anand is Professor of Planetary Science and Exploration at the Open University, UK.

  • At the core of Earth’s geological thermostat is the dissolution of silicate minerals in the presence of atmospheric carbon dioxide and liquid water. But at large scales, the effectiveness and temperature sensitivity of this reaction depends on geomorphological, climatic, and tectonic factors that vary greatly from place to place. As described in the podcast, to predict watershed-scale or global temperature sensitivity, Susan Brantley characterizes these factors using the standard formula for the temperature dependence of chemical reaction rates using an empirically-determined activation energy for each process. Overall, her results suggest a doubling of the weathering rate for each 10-degree rise in temperature, but this value changes with the spatial scale of the analysis.

    Susan Brantley is a Professor in the Department of Geosciences at Pennsylvania State University.

  • Banded Iron Formations (BIFs) are a visually striking group of sedimentary rocks that are iron rich and almost exclusively deposited in the Precambrian. Their existence points to a major marine iron cycle that does not operate today. Several theories have been proposed to explain how the BIFs formed. While they all involve the precipitation of ferric (Fe3+) iron hydroxides from the seawater via oxidation of dissolved ferrous (Fe2+) iron that was abundant when the oceans contained very low levels of free oxygen, they disagree as to how this oxidation occurred. In the podcast, Clark Johnson describes how oxidation could have occurred without the presence of abundant free oxygen in the oceans.

    Clark Johnson is a Professor Emeritus in the Department of Geoscience at the University of Wisconsin-Madison.

  • The geological history of most regions is shaped by a whole range of processes that occur at temperatures ranging from above 800°C to as low as 100°C. The timing of events occurring over a particular temperature range can be recorded by a mineral which crystallizes over that range. The mineral calcite is suitable for recording low-temperature processes such as fossilization, sedimentation, and fluid flow, and it is especially useful as it is virtually ubiquitous. But using uranium-lead radiometric dating in calcite is very challenging as it often contains very little uranium and the ragiogenically-produced lead isotopes can be swamped by common lead within a calcite crystal. In the podcast, Catherine Mottram explains how these challenges are being overcome and shares some of her findings based on radiometric dating of calcite. Mottram is an Associate Professor of Geology at the University of Portsmouth.

  • In this episode, Martin Van Kranendonk lays out a convincing case for life on Earth going back to at least 3.48 billion years ago.

    To find evidence for very ancient life, we need to look at rocks that have been largely undisturbed over billions of years of Earth history. Such rocks have been found in the Pilbara region of northwest Australia. As explained in the podcast, the 3.48-billion-year-old (Ga) rocks of the Pilbara's Dresser Formation contain exceptionally well-preserved features that show unmistakeable physical and chemical signatures of life. While older 3.7 Ga rocks in west Greenland may also prove to have harbored life, the Dresser Formation rocks represent the oldest widely accepted evidence for life on Earth.

    Martin Van Kranendonk has devoted his long and prolific research career to the study of the early Earth. One major theme of his work has been to use detailed mapping and lab research to develop geological models for the environments of Earth’s oldest fossils. This has helped establish the biological origin of many ancient fossils. His recent work on a newly discovered find of exceptionally well-preserved 3.5-billion-year-old sedimentary rocks in the Pilbara Craton of Western Australia has provided the strongest evidence to date that structures of this great age were produced by the earliest forms of life.

    Martin Van Kranendonk is a Professor in the School of Biological, Earth, & Environmental Sciences at the University of New South Wales in Sydney.

  • The Alps are the most intensively studied of all mountain chains, being readily accessed from the geological research centers of Europe. But despite this, there remains considerable uncertainty as to how they formed, especially in the Eocene (about 40 million years ago) when the events that led directly to Alpine mountain-building started. In the podcast, Rob Butler explains how much of this uncertainty stems from our fragmentary knowledge of the locations and structures of sedimentary basins and small continental blocks that lay between Europe and Africa at that time. In his research, he combines detailed studies of the sedimentary rocks flanking the Alps with the large body of structural and petrological knowledge amassed over the past two centuries to try to unravel the sequence of events leading up to the formation of the Alps.

    Rob Butler is Professor of Tectonics at the University of Aberdeen, Scotland, UK.

  • The Franciscan Complex is a large accretionary prism that has been accreted onto the western margin of the North American continent. Unlike most such prisms, which are submarine, it is exposed on land, making it a magnet for researchers such as John Wakabayashi. In the podcast, he describes this remarkable complex and explains the mechanisms that may have operated over its 150-million-year history.

    John Wakabayashi is a Professor in the Department of Earth and Environmental Sciences at California State University, Fresno. He has devoted much of his 40-year research career to the Franciscan Complex.

  • How can we tell if the sedimentary record is good enough to make solid inferences about the geological past? After all, it can be difficult, or even impossible, to infer what is missing, or indeed whether anything is missing at all.

    As he explains in the podcast, Bruce Levell tackles this question by combining fieldwork with systematic analysis based on what we know about contemporary deposition and erosion. Armed with an understanding of preservational bias, he questions the confidence with which some widely held interpretations of the sedimentary record have been made. For example, by analyzing sequences of glacially-deposited rocks in southwest Scotland, he has shown with others that, contrary to the “Hard Snowball Earth” hypothesis, parts of the Earth probably experienced a persistently active hydrological cycle and were not simply fully-frozen, at least during the earlier of the two postulated snowball glaciations.

    Bruce Levell is a Visiting professor in the Department of Earth Sciences at the University of Oxford. Previously, he was Chief Scientist for Geology at Royal Dutch Shell.

  • In a recent episode, Nadja Drabon spoke about newly discovered zircon crystals that formed during the late Hadean and early Archean, when the Earth was between 500 million and a billion years old. The zircons revealed information about processes occurring in the Earth’s nascent crust, casting light on when and how modern-day plate tectonics may have started. In this episode, we talk about a very different source of information about the early Earth, namely the abundances of noble gases occurring within present-day basalts. It turns out that these can probe the Earth’s mantle and atmosphere even further back in time – to the first 100 million years of Earth history.

    Sujoy Mukhopadhyay leads a team of researchers who have developed new techniques for measuring the abundances of noble gas isotopes in a variety of Earth materials. By combining the results of these measurements with geochemical models, he has shed light on questions about the very early Earth and planet formation that have challenged researchers for decades. Here we focus on one of these: “Do any structures originating from the very early Earth survive in today’s mantle?” Amazingly, the answer is "yes."

    Sujoy Mukhopadhyay is Professor of Geochemistry at the University of California, Davis.

  • In 2011, a massive earthquake struck off the eastern coast of Japan. The destructive power of the earthquake was amplified by a giant tsunami that swept ashore, killing over 15,000 people. A major cause of the tsunami was the 50-m slip along the plate boundary fault between the subducting Pacific plate and the overriding North American plate. Patrick Fulton and his team set out to find out why there was so much movement along the fault by installing a temperature observatory in a borehole drilled right through the fault zone.

    Patrick Fulton uses observation, quantitative analysis, and numerical modeling to study heat and fluid in fault zones. He applies his research to the physics of earthquakes, tectonic processes, and the transport of subsurface heat and fluids. In the podcast, he describes how he and his team installed a borehole temperature observatory below 7 km of ocean. The observatory detected the remnants of frictional heating generated by the slip that caused the 2011 Tōhoku Earthquake and the devastating tsunami that led to the Fukushima nuclear disaster.

    Patrick Fulton is an Assistant Professor in the Department of Earth and Atmospheric Sciences at Cornell University.

    For more about Geology Bites and illustrations that support the podcast, go to geologybites.com.

  • Romain Jolivet studies active faults and the relative motion of tectonic plates.  His research focuses on the relationship between slow, aseismic slip that occurs “silently” between earthquakes and the rapid slip accompanying earthquakes.  As he describes in the podcast, he uses interferometric synthetic aperture radar (InSAR) images from radar satellites to examine surface deformation over wide areas at meter-scale resolution.  InSAR images of the 2023 Turkey-Syria earthquakes reveal complicated slip patterns occurring on well-recognized plate boundary faults as well as on hitherto ignored faults.

    Romain Jolivet is a Professor of Geoscience at the École normale supérieure in Paris.

    For illustrations that support this episode and to learn more about Geology Bites, go to geologybites.com.

  • The geological record shows that the Earth’s carbon cycle suffered over 30 major disruptions during the Phanerozoic.  Some of the biggest ones were accompanied by mass extinctions.  Dan Rothman analyzed these disruptions to find a pattern governing their magnitude and duration.  As he explains in the podcast, this pattern is suggestive of a non-linear dynamical system that, once excited, undergoes a large excursion before returning to where it was.  Could we be exciting such a disruption now?

    He shows that the mass of anthropogenic carbon emissions forecast by the end of the century is about the same as the mass of carbon dioxide outgassed by the massive volcanism that generated the portion of the Deccan Traps deposited just before the end-Cretaceous extinction.  This leads him to hypothesize that, while the Chixclub meteor impact may have been the direct cause of the extinction, the disruption of the carbon cycle caused by the outgassing of CO₂ during this prolific series of eruptions contributed to the environmental change associated with mass extinction. 

    Go to https://www.geologybites.com/ for illustrations that support this episode and to learn more about the Geology Bites.

  • Vanishingly few traces of the early Earth are known, so when a new source of zircon crystals of Hadean age is discovered, it makes a big difference to what we can infer about that eon.  In the podcast, Nadja Drabon describes how she analyzed the new zircons she and her colleagues discovered and what they reveal about the Earth’s crust between about 4 and 3.6 billion years ago.

    Nadja Drabon is Assistant Professor of Earth and Planetary Sciences at Harvard University.
    For podcast illustrations and more about Geology Bites, go to geologybites.com.

  • Over the course of Earth history, many parts of the crust have undergone multiple episodes of metamorphism.  Modern methods of dating and measuring trace-element abundances are now able to tease out the timing and conditions of the individual episodes.  But new techniques were needed before these methods could be scaled up to unravel regional tectonic events such as the formation of mountain belts and subduction zones and continental rifting.  In the podcast, John Cottle describes one such technique that he and his group developed and that ushered in a revolution in the study of metamorphic rocks.  He discusses how the technique was used to resolve the multiple phases of metamorphic history in the Himalaya, Antarctica, and New Zealand.  

    John Cottle is a Professor in the Department of Earth Science at the University of California, Santa Barbara.

    Go to geologybites.com for illustrations that support the podcast and to learn more about Geology Bites.

  • This episode is the second of two of my conversation with Martin Gibling.  In the first episode, we discuss fluvial deposits in the geological record and we trace the effect that the break-up of Pangea around 200 million years ago had on river systems.  In this episode, we address the history of the rivers of Europe and the Americas, as well as the impact of the recent ice ages on today’s rivers.  We end by considering how humans have changed rivers and their deposits throughout mankind’s history. Martin Gibling has spent a lifetime studying rivers and river sediments around the world.  He is Emeritus Professor in the Department of Earth and Environmental Sciences at Dalhousie University in Halifax, Nova Scotia in Canada. 

    For pictures and figures that support this podcast, go to geologybites.com.

  • Rivers can seem very ephemeral, often changing course or drying up entirely.  Yet some rivers have persisted for tens or even hundreds of millions of years, even testifying to the breakup of Pangea, the most recent supercontinent, about 200 million years ago.  On the one hand, their courses may be determined by tectonic processes such as the formation of mountain belts.  And on the other, they themselves can affect tectonic processes by creating continent-scale features, such as giant submarine fans. Martin Gibling has spent a lifetime studying rivers and river sediments around the world.  He is Emeritus Professor in the Department of Earth and Environmental Sciences at Dalhousie University in Halifax, Nova Scotia in Canada. This episode is the first of two of our conversation about rivers.  In this episode we talk about fluvial deposits in the geological record and the impact of the break-up of Pangea on river systems.  In the second episode we talk specifically about the history of the rivers of Europe and the Americas, as well as the impact of recent ice ages.  We end by considering how humans have changed rivers and their deposits throughout human history. 

    For pictures and figures that support this podcast, go to geologybites.com.

  • This episode is a bit of a departure from the objective approach to geology of past episodes in that here we address the subjective nature of various rocks as experienced by a rock climber with a literary bent.

    A rock climber’s very survival can depend on the properties of a rock encountered along a climbing route.  This engenders a uniquely intense relationship between climber and rock.  Anna Fleming has written perceptively about this intense relationship gained from climbing in Britain and the Mediterranean.  In a book entitled Time on Rock, she writes about her experiences climbing gritstone in England’s Peak District, slate in the disused slate quarries of North Wales, gabbro and granite on the Isle of Skye, sandstone on the northeast coast of Scotland, and limestone cliffs on the Greek island of Kalymnos, among others.

    For pictures and figures that support this podcast, go to geologybites.com.